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1. IKTRODDCTION 

Thl« paper Is devoted to deteraloistlc Inventory eodels for three 
i 

prlrurv reasons. The firsc is that such t&odels provide considerable Insight 

about inventory models which may not be deterministic. The second is that 

»any stochastic models are approximated by deterministic ones (for example» 

by using expected demand rates in place of deterministic onesX The third is 

the limited variety of deterministic models which have been studied In the 

literature. The first two reasons are of particular importance to people 

who are applying inventory theory to real-world inventory systems. 

Past work [3] on deterministic inventory models, with few exceptions, 

has assumed the nature of the ordering policy to withh one or two unknown 

parameters. For example, a periodic review model might specify that a 

quantity Q can only be ordered at the end of a known period of time T- 

The unusual problem would be to determine the value of the parameter Q which 

minimizes the total purchase or production plus holding costs.  If, however, 

the nature of the optimal policy need not be specified prior to the analysis 

then we would expect that the complete nature of the optimal policy will result. 

Unfortunately, If the nature of the ordering policy is not specified 

then considerable complexity of analysis can result if one attempts to use the 

differential calculus (see, for example, the work of Arrow and Karlin [ij)- 

This complexity can be reduced however if the Maximum Principle of Pontryagin 

et al [A]  is used In determining the optimal ordering policy.  Such an approach 

will be taken in this paper. 

The paper begins with an analysis of the no-stockout periodic review 

problem posed by Arrow and Karlin [2] to illustrate the approach and the 
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Blnpllclty of analysis chat lc provides. Then an analysis of a periodic review 

problcra wich atockouts allowed is made to show how the allowing of ntockouts 

complicates the optimal control problem. 

II. KO-STOCKOUTS PROBLEM 

Model Forffiulatlon—This is a generalitatlon of the problem formulated by 

Arrow and Karlin [2]. We are interested in scheduling the production of an 

item so as to minimize its production plus holding costs over a specified 

period of time T. We will assume a zero lead time. Let 

I(t) ■ the inventory level at time t; 

r(t) ■ demand rate at time t; 

u(t) a  the production rate at time t. 

Both r(t) and u(t) are to be non-negative. 

All demands are assumed to be met and, as a consequence, 

[  [u( I(t) = 1(0) + |  [U(T) - r(T)]dT i 0 
0 

(1) 

where 1(0)  represents the on-hand inventory at the beginning of the time period. 

We can rewrite (1) as 

ft        ft 
u(T)dT ^   r(T)dT - 1(0) 

0        ■'0 
(2) 

and consider it to represent a constraint on u(t). 

The production and holding costs per unit time will be represented by 

c(u(t)) and h(I(t)) respectively.  We will assume that they are monotone- 

increasing and continuously differentiable in their respective arguments. No 

other costs are assumed to exist. The total production plus holding costs 

for the period are given by (3). 

fT 
J(u) - [c(u(t)) + h(I(t))]dt  . (3) 
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Our objecdve is Co find a policy   u(c) 2 0   which Mtisfi«« (2) 

and minioizeB  (3). 

The Haxtmua Principle for the Problem—For convenience, we will refer to (3) 

in the following form in our analysis: 

|T 

'o 

In applying the Haximuo Principle a function called the Bamiltonian 

is created as follows: 

dl 

fT 
J(u) -   f0(u,I)dt 

in u 

HCu.l.PQ.p^t) - P0(c)f0(u,l) + P^t) ■& (4) 

The derivative ~ iB obtained by differentiating (I). The Hamiltonian, upon 

introducing the expressions for f- and rrr , Is given by (5) where t has 

been suppressed. 

HCU.I.PQ.PP - p0lc(u)+h(l)] +p1[u-r] 
(5) 

For fixed I, p., and p  let MCI,?-,?-) - max H(u,I,p0,p-) over the domain 

of u(t) values satisfying u(t) i 0 and I(t) i 0 . 

The necessary conditions for optlmallty of our problem from the 

Maximum Principle are given bj the following theorem [A]. 

Theorem; An admissible order policy u*(t) and the resulting Inventory level 

I*(t) are optimal If there exist continuous functions P0(t) and p.Ct) 

which satisfy 

dl _ 3H_ 
dt " 3p] 

^>-0 
dt 

(6) 

(7) 
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ituch that 

dt 
dH 

" dl      ; 

P0(T) - - 1 

Pid) - 0     ; 

(8) 

(9) 

(10) 

H(u*.I*fpofp1) - MdÄ.pQ.p^ 

for all t in (O.T). 

The condition given by (10) is a consequence of the transversality 

condition for a free right-hand end condition for I(t) ; that Is, we are not 

going to force I(T) to take on any specified value. This is a point of major 

difference between this analysis and that of Arrow and Karlin[2] and Adiri and 

Ben-Israel (1)« In both of these studies the assumption was made that I*(T) ■ 0. 

If, however, I(T) ■ 0 Is really optimal then the results of the analysis should 

show it. We shall see below that they do. 

The Optimal Policy—Examining the conditions from the theorem we get back from 

(6) our constraint that -r- ■ u(t) - r(t) and consequently that 

I(t) - 1(0) + | [u(T)-r(T)ldi 

with 1(0) as the given initial condition. From (7) and (9) we get PQ(t) - -1 

for all t In [0,Tj. From (8) we get 

and, because PQU) - -1, 

dl2 
dt 

dPj 

dt 

-p ähüi 
p0  dl 

d h(I) 
dt 

utmxm*»* 
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ft 
p^t) 

d h(I) 
dl 

dt + p1(0)     . 

Because of (10) p. (T) = 0 Is needed and it follows that 

(11) 

P^O) = - 
d h(I) 

dl dt 

and, therefore, (11) reduces to 

P^t) = 
d h(I) 

dl di (12) 

We will  find    —   helpful  in selecting    u*(t) From  (5) we obtain 

dH _        d c(u) 
du ~ P0      du 

+ Pi (13) 

Substitution of PntO = -1 and p (t) as given by (12) into (13) then results 

in 

dH 
du 

d c(u) 
du 

d h(I) 
dl 

di (1A) 

Because we assumed    -7— >  0 and       , >  0    it  is immediately evident from  (14) du 

dH 
that T-  < 0 for t in [0,T]  and therefore that the maximum value of H 

du 

occurs for the smallest value of u(t)  which satisfies u(t) ^ 0 and I(t) i 0 

Therefore, we deduce that 

u*(t) = 
0   for 0 ^ t < t.  ; 

r(t) for t. ^ t ^ T , (15) 

where    t..     is obtained  (1) when    I(t1)  = 0;    that is,  from 

r(T)dT  = 1(0)     . 

-5- 

..^ _..- .;., .*,■  .r.ir,:.,.-iiit^,;.*.\„imJ ^lAuxmtoL^i.Ht'-—, ■'■    ■ '■ ^i1rf-nVt[l'iM'|-ir'"ifirHH^MIihl(li 
,"""''''"'n7"rn''iifr'iTiiiiiir*iiä£riiliMftMi(m^^ -I'lilnir 



WSSaSBÜ^fSSSSlüB. mmiminwn.-riHm'oi"'"" "•'<■ <" '»>■■ mmsmm 

.-..     ..        ■■...-.        ■ v ■     . 

In other words, the optimal order policy is to first use up the on-hand inventory, 

then order to just meet current demand. We see that no inventory is held after 

the initial inventory 1(0) is consumed. It is therefore immediately evident 

that I(T) = 0 under this policy. 

Comments—The optimal policy is intuitively appealing. When there are costs assoc- 

iated with both production and holding inventory we would like to avoid incurring 

either if we can. The constraints require, however, that we meet demand when it 

occurs. Waiting to produce until we have used up the existing inventory 1(0) 

keeps inventory holding costs to a minimum because we reduce the inventory as 

fast as possible while incurring no production costs. Producing only to meet 

demand after the inventory 1(0) is used up insures that I(t) is zero and 

therefore that no holding costs are incurred. The production costs Incurred are 

only those necessary to meet the demand. The only restrictions we placed on 

c(u) and h(I) were that 

dc(u) 
du 

dh(I) 
dl 

> 0 for u :> 0 , 

> 0 for I s: 0 . 

We  could also allow       ,1      ^. 0    and get the same result.    For example,   if there 
dl 

is no holding cost for items in storage we would get (14) in the reduced form 

dH 
du 

de 
du 

and the optimal policy given by (15) still holds. Our result is much more 

general than that of Arrow and Karlin [2] who required c(u) to be convex and 

continuously twice differentiable in addition to being monotone increasing.  Further 

they only considered the case of h(I) ■ hi. Our result is also more general than 

that of Adiri and Ben-Israel [1] even though they used a general h(I) . 

-6- 

■■•■"--..■.I,,,.}'.-; 

W 'ti'i^'''-^'<'HMM*:'-<'■•■•' '< ■     ■    ■       ■   ■ ^--jj!':-'     ■■njiii ■ »• r—t-HM, .m 1.. •..(/»* mamtmlUmitmmimi&iki&mätlri ******•*.■&'*» W!^MW^^(Mat^^iJ.-^^■^J^^■.^^^■^^•J^^lV■-.^Ui^.iL^t^f Jf^^j^j^if, 



ii iiiwiimimwiiiiiiiiiiii ""||11'111111111 "| '|"1  

III. STOCKOUTS-ALLOWED PROBLEM 

Model Formulation — The problem when stockouts are allowed in general form 

is to find u(t) ^ 0 which minimizes (3); ie, 
T 

J(u) [c(u(t)) +h(I(t))] dt  , 

where now h(I) represents holding and shortage costs. 

dH 
The Hamiltonlan and — in this case are the same as (5) and (1A) 

respectively. They are repeated here for convenience. 

H(u,I,p0, p1) = p0 [c(u) + h(I)] + p1 [u-r]  . 

dh = _ dc(u) _ 
du      du 

dh(I) 
dl dt 

The theorem stated in the previous section still provides the necessary condit- 

ions for optimal u(t). Although the assumption that  ^'   > 0 for u i 0 

remains reasonable, the assumption -rr a 0 is no longer reasonable over all 

possible I(t) values because the "stockouts-allowed" case can result in 

I(t) < 0. We expect instead that ^7 ^ 0 for I(t) < 0 because a reduct- 

ion in the number of shortages should result in a decrease in stockout costs. 

It is therefore possible to get 

rT 

; 

dh(I) 
dl dr < 0 , 

and if this integral is large enough it could cause 

dH 
du :> 0 
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for some values of t in [0,T]. If this should happen then optimal u 

would be infinite unless we impose an upper bound on its range. We will 

therefore assume u(t) ^ b < " . 

It is important to observe that we will always have 

dH 
du t=T 

du 

We can therefore say that regardless of the form of h(I) the optimal 

ordering policy will always have u (T) = 0. This information will be ex- 

tremely useful in the analysis of the problem allowing stockouts. 

To progress beyond this observation, we must select a form for h(I). 

Suppose we assume a linear form as follows: 

-h-Kt) for   I(t) £  0 

h(I(t)) «H 

h2I(t)   for   I(t) ä: 0 

whe re h. > 0 and h- > 0 represent the shortage and holding costs per 

* ■ 

unit of inventory per unit time. When we attempt to obtain the derivative 

-JY  of this form we realize that it does not exist at I(t) =0. If, instead, 

we assume that h(I(t)) smoothly transitions from -h I(t) at I(t) - -e 

to +h2I(t) at I(t) ■ + e for e > 0 but very small then the derivative 

will exist at any point in the e-neighborhocd of   I(t) = 0. If we assume 

. further that the minimum point of the h(I) curve occurs at 1 = 0 we. can 

A't\ 
approximate -rr by the following form: dl 

dh 
dl 

' -lu for  I(t) < 0 

= < 0  for  I(t) - 0 

h. for  I(t) > 0 . 
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de 
For convenience we will also assume — = k and r(t) = r where k 

du 

and r are positive constants. 

Preliminary Observations about the Optimal. Policies—Under the model assumpt- 

ions we see that if I(t) > 0 over [0,1] then 

t 
■W 

dH 
du 

-k - h2dT - -k -h2[T-t] (16) 

dH 
and we realize that "j^ < 0 for a11 t in [0»TJ• The optimal order policy 

is u (t) - 0. Now if 1(0) :» rT, we will get I(t) - l(0)-rt > 0 for 

u(t) = 0 except possibly at T where I(T) =0 when 1(0) = rT. 

Suppose next that 1(0) < 0 and we order nothing, then I(t) - 1(0) -rt < tt 

for all t in [0,T). In this case. 

f - -k + h1 [T-t]  , (17) 

and it is possible to get — it 0. If we set T^ « 0 and solve for t in 
du du 

(17) we get 

t » T - ? (18) 

* dH * 
In th« range t < t   we have j- > 0; In the range t < t sc T we have du 

du 

Because T.k, and h. are parameters of the problem it is possible co 

dH 
have t < 0 so that -^ < 0 over all t In [O.T]. This will occur when 

k 
T < r- . The optimal policy when this happens is co order nothing; ie, 

1 

u (t) - 0. 

dH dH 
When T > T-  then -r- > 0 if we order nothing. However, ^r >    0 

du 

implies that u (t) • b. If b > r Chen ic Is possible Co gee X(c) > 0 

-9- 
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towards the end of the time period and (17) would no longer apply. Some 

form such as (19) is suggested for t in [0,t.] where t. is the value of 

t when I(t) ■ 0. 

£ = - k + h1[t1 - t] - h^T-t^  . (19) 

In spite of the additional complex forms for -j— which may arise, they will 

all have an appearance uimilar to (19). 

The Optimal Policies—The optimal policies for the stockouts-allowed problem 

will be stated before the arguments leading to these policies are presented. 

Before stating the optimal policies it is convenient, to define several 

quantities. 

Let 

lUr-bJt 

I2 - [r-blt    . (21) 

I3 - rt  , (22) 

:  (h.+hjl(0) - h. [r-blt 

t -  1 hh4.hr l   • (23> 
hlb+h2r 

where t. given by (18), it repeaced here for convenience« 

k t - T - f 
hl 

-10- 
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The optimal order policies are: 

1. If t > 0 and (a) 0 < b < r,  1(0) =£ 1^ or (b) b i r, 

1(0) s: l2, then 

, b for 0 ^ t ^ t , 
u (t) = 

0 for t < t i T . 

2.  If t > 0, 0 <b <r, and 1^^   < 1(0) <I , then 

1 
i 

* 
u (t) 

0 for 0 ä t < t , 

/ b for t r: t s t  , 

0 for t < t i T . 

If t > 0, b i r, and 0 c  1(0) i I-,  then 

' 0 for 0 « t < m£- 

u (t) - { r for JMl s: t i c 

0 for t < c s T . 

4. If t > 0, b :•  T,    and    I , < 1(0) £ 0, then 

b for 0 -•: C S lb-rj 

*    y      -KO) 
u (t) - \ r for jg^-j  < t i t 

0 for t < c fi T . 

S. Ocherviae u (c) > 0 for all c in (0.T) . 

-II- 
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Proof of the Optimal Policies—We have already shown that u (t) = 0 if 

1(0) ^ rT or if I(t) < 0 and t < 0 (that is, T < - )  in our pre- 
1 

liminary comments. These cases corresponded to -r- < 0 over all t in 

[0,T]. We can add I(t) <0 and t = 0 to this list immediately because 

t » 0 corresponds to -T- ■ 0 at t = 0 and thus T~ 
< 0  for &H    t in r       du du 

(0,T]. 

Turning next to the case of I(t) &  0 and t > 0 we realize that, 

because (17) applies, J
-
 

> 0 for t ^    [Oit), In this time period 

u (t) « b is the policy which will maximize H(u). The period (t,T] has 

4^ < 0 in (17) and u (t) ° 0. The switch from u (t) => b to u (t) = 0 
du 

takes place at t. 

The conditions necessary for maintaining I(t) i 0 can be obtained 

from consideration of the following equation for I(t) which results 

from the optimal policy Just stated. 

il(0) + lb-r]t for 0 s t s t 

1(0) + bt - rt for t < t s T 

If b < r chen I(t» decreasts as t incruaaea over [0,Tl. Therefore, 

if 1(0) i 0 then I(t) i 0 over [O.TJ. If b - r then I(t) - 1(0) 

long as u(c) ■ b and decreases as soon as u(t) ■ 0. 

If b - r It is possible to have I(t) > 0. Now If b > r the max- 

imum value of I(t) occurs at t.  if  I(t) is to be nonposltlve then 

we must have 

as 

-12- 
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I(t) » 1(0) + [b-r]t s 0 

I(t) ^ 0 will occur if 

1(0) i [r-b]t= I, 

where I» < 0 because b > r. 

In summary, we have just shown that 

* 
u (t) 

b for 0 s t s: t , 

0 for t < t s T , 

i 

for all the conditions except 0 < 1(0) si l^    for 0 •- b < r of the first 

optimal policy. 

For 1(0) > 0 it is also possijle to T" * 0 for some portion of [0,T]. 

We will concentrate on the range 0 < 1(0) < rT because we have already 

shown that u (t) ■» 0 for 1(0) i rT. If u(t) - 0 and 1(0) Is in this 

range then I(t) < 0 for t < t i T where 

t   -IM 
1   r 

(24) 

dH 
The corresponding expression for -j— Is 

OH 
du 

-k -h2[t -t] + h (T-t1] for 0 i t i t.  , 

-k +h1(T-t] 
(25) 

for t. « t sC T . 

~ has a slope of (+h2) in the region 0 s t a: t. and a slope of (-h.) 

in the region t. s t s T. A representative family of -j— curves for (25) 

-13- 
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are shown in figure 1 and covers 1(0) values for  [0,rT]. The curves 

designated by 1 and 5 correspond to 1(0) - 0 and 1(0) ■ rT, respect- 

dH 
du 

curve of the figure. 

du 

ively. The optlmallty condition -r- ■ -k for t - T Is Imposed on each 

Any curve between 1 and 2 suggests one switching; that Is, -r- 

Is positive for t < t  and negative for t > t. Any curve, such as 3 , 

between 2 and A suggests two switchings because -r- is negative, then 

positive, and then negative again. Any curve between 4 and 5 suggests 

no switching should take place. 

It is immediately evident that conditions resulting in -r- curves 

between A and 5 can be added to the u (t) •» 0 list. Curve A corres- 

ponds to t. ■ C which» when stated in terms of 1(0), results in 

1(0) - rti I3 

Therefore, if 1(0) i I3    then u (t) - 0 for all t in (O.T). 

Because u(t) " 0 is not optimal for the curves between 1 and A 

we will first investigate the behavior of 1(c) when we follow the switch- 

ing patterns suggested by the curves. We will then re-evaluate the express- 

ions for -r-    . This process may require several iterations before a pair 

of "matching" I(t) and -r- curves can be  obtained signalling that 

optimal u(t) has been found. 

One switching should be considered for conditions creating the curves 

dH 
between 1 and 2 ; the switching should occur at ^T " 0' From figure 1 

JU 

we know that T~ " 0 only in the segment dominated by h  and that (17) 

applies. Therefore switching should occur at t. 
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dH Figure 1.    -r-   curves for equation (25). 
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If we let 

then, from (1), 

u(t) - 

b for 0 ^ t ^ t , 

0 for t < t < T  , 

Kt) 

1(0) + [b-rjt for 0 ^ t ^ t , 

(26) 

1(0) + bt - rt for t < t ü T . 

A family of I(t) curves for (26) is shown in figure 2. Curve 1 is 

representative of a case when b > r. Curve 2 results from b " r.  Curves 

3  , A , and 5 correspond to b < r. Curve 5 has b » 0 and is 

the limiting curve for the b < r cases. 

Figure 3 shows the curves of -r- corresponding to I(t) curves of 

figure 2. The same curve numbers have been used in both figures to show 

the correspondence. Curves between 1 and 3 have T~ * 0 over tO,T] 

and suggest that no switching is optimal. Curves between 3 and 5 suggest 

that at least one switching is optimal. 

For any curves between 4 and 5 we see that -r- has the same 

behavior as in figure 1 for curves between 1 and 2 . Therefore, 

\   b for 0 s: t s t , 

u (t) - ( 

I 0 for t < t s T , 

for the conditions leading to these -r- curves. 

The first condition is that 0 <b < r. The second is that T^ ^ 0 

at t - 0. Translating this into a relationship Invoiring 1(0) we have 

«« s Ä lhiT-k) 5 h  ■ 
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Figure 2. Curves of I(t) for equation (26). 
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dH 
du 

Fieure 3. T^ curves associated with the I(t) curves of ö      du 

figure 2. 
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This analysis has been based on the assumption that 1(0) > 0,  therefore 

the proof of the first optimal policy is complete. 

We consider next the curves between 3 and 4  . Figure 2 Indicates 

that 0 <b < r and figure 3 shows that two switchings may be optimal; 

the first at some time t prior to t and the second at t. The following 

policy is therefore suggested. 

u(t) = ( 

0 for 0 ^ t < t 

h for t :£ t £ t 

0 for t < t £ T 

The corresponding expression for I(t)    would then be 

/ 

Kt) = ( 

1(0) - rt for 0 £ t < t; 

1(0) + b(t-tl - rt for t s t £ t 

1(0) + b[t-t] - rt for t < t s: T 

(27) 

(28) 

Figure 4 illustrates the family of curves associated with (28) and 

dH 
figure 5 presents the corresponding -r~ curves. From these two figures we 

* see that curves 2 and 3 will have  u (t) given by (27). To find the 

va dH 
lue of t we set -r- = 0    in equation (19) where now I(t) = 0 at 

= I +  KO) - rt 
1       b - r 

We will get the expression given by (23) and t > 0 if 

Similarly, t < t if 

Mr-bit 
no) >^r2^h 

1(0) < rt = I3 . 

When 1(0) - I1   we get    t ■» 0 and the optimal policy given by 

■19- 
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Figure 4.  Curves of I(t)  for equation (28) 
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Figure 5.  Curves of fj associated with the I(t) curves 

of figure 4. 
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(27) reduces to that derived above for the case of 1(0) i I  and I(t) 

corresponds to curve 4 of figure 4. If t • t then (27) reduces to 

u (t) ■ 0 and I(t) corresponds to curve 1 of figure A. We have already 

shown that u (t) - 0 If 1(0) i 1. regardless of the relationship of 

b to r. In suromary, when t > 0, b < r, and I. < 1(0) £ I  then 

u (t) is given by (27) and the second optimal policy is confirmed. 

To complete the analysis of cases for 1(0) i: 0 we next consider the 

case of b ä r. When b - r the bound I.  is zero while 1. does not 

change so 0 s 1(0) £ I-.  Equation (23) reduces to 

; .mi. 

We realize that t occurs simultaneously with t.  as given by (24) 

and hence I(t) - 0 between t and t. Equation (31) shows that -r- 

is constant over this-interval because T~ = 0 for 1(0 ■ 0 was assumed. 
du 

dH 

-k - h2[t-t] + h^T-t]  for 0 ^ t S t 

^-< -k-fhjT-t] du 

^ -k + hjjT-t] 

iror t ^ t s: t 

for t 2: t £ T 

From the definition of t we also realize that this constant value of 

(31) 

dH 
du 

must be zero. Therefore u (t) can take on any value between 0 and b. 

However, I(t) =«0 for t in [t,t] only if u (t) - b. 

This argument can be easily extended to the case of b > r. The optimal 

policy should take the following form, however; 

0 for 0 s: t < t 

r for t S t ä t (32) 

0 for t < t s: T . 
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dH 
The corresponding expression for -r- is again given by (31) and since 

dH 
du 

0 over t S t S t we can assign any value of u as optimal between 

0 and b. The only value of u which will maintain I(t) - 0 over [t,t] 

is now u(t) - r. Figure 6 illustrates the resulting curves of I(t) and 

dH 
du 

. The third optimal policy has been proved. 

These arguments can also be used for the case of b > r and I- < 1(0) ^ 0. 

We recall that u(t) ■ b for [0,t] and zero outerwise would result in 

dH 
I(t) > 0. Figure 7 contains possible I(t) curves. The corresponding ^ 

curves are shown in figure 8. 

The curves 3 in the two figures correspond to the case of 1(0) - I^ 
A 

and the first optimal policy applies (equation (32) would have t ■ 0). 

The curves 1 and 2 from figure 7 do not allow -.— = -k for t « T and 

hence u(t) given by (32) Is not optimal. However, if we assume the following 

form for u(t) we can satisfy this condition. 

/ 

u(t) = 

where now 

for 0 ^ t ^ t , 

for t si t £ t , 

for t ;£ t £ T , 

: . KQ) 

(33) 

[b-r] 

The 
dH 

resulting equation for -r— is: 

-k + h [t-t] + h1[T=t]   for 0 s: t s t 

dH 
du 

-k + h^T-t] 

-k + h^T-t] 

dH 

for t sS t s: t 

for t ^ t s: T 

We realize, as we did for (31), that  ^ =0 for t ü t s: t and 
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Figure 6.    I(t) and    gr-   curves for    u  (t) given by equation 

(32). 
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I(t) 

Figure 7. Possible 1(0 curves for b > r, 1(0) < 0, 

u(t) = b over [0,t]. 
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dH 
du 

dH 
Figure 8. Curves of -j— associated with the I(t) 

curves of figure 7. 
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dH 
du 

-k- 

Figure 9.     Curves of    I(t)    and 

by  (33). 
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that we should select u(t) = r to maintain I(t) = 0 over this interval. 

Therefore (33) gives the optimal policy when I2 < 1(0) ü 0. The curves of 

I(t) and — are shown in figure 9. The proof of the fourth optimal policy 

is complete. 

Comments—When stockouts are allowed we see that the analysis becomes immedi- 

ately more complex because the l(t) S: 0 constraint has been removed and 

therefore the region of feasible u(t) has expanded to always include 

u(t) = 0. The assumption of an upper bound on u and specific forms for 

the elements of the cost function appear necessary before an analysis can 

proceed. 

The linear problem presented in the preceding section was chosen for 

the illustration of the stockouts-allowed analysis primarily because the 

cost functions are typical of many deterministic models appearing in the 

literature. Future analyses will investigate the influence of several diff- 

erent nonlinear cost forms. It should be evident from the preceding analysis 

that while the use of the Maximum Principle allows a general order policy to 

be postulated, it requires that careful consideration be given to the form 

of the objective function.  In contrast to the no-stockouts model, the 

nature of the form selected will strongly influence the nature of the optimal 

order policy. 

The iterative procedure of postulating u(t), evaluating I(t) and 

dH 
j— , and re-postulating u(t) until finally a "matched set" of expressions 

for I(t) and -r- is obtained seems to hold considerable promise for 

problems having nonlinear cost functions. The virtue in obtaining the "matched 

set" is that then both the necessary and sufficient conditions for optimality 

have been obtained. 
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